121826

Call Number: 61256160106

Journal Title: Lancet
Journal Vol.: 1
Journal Issue: 7894
Journal Year: 1969
Article Title: Oestrogen fraction during early reproductive life in the etiology of breast cancer
Article Author: Cole, F
Article Pages: 694-6

Customer Information:

Name: Glaser, Rebecca
Status: Faculty
Address: SOUTHVIEW (via Kettering Hosp),
Site:
E-Mail Address: rglaser@wch.rr.com
Phone: 937-885-4555
Department: School of Medicine
Hypothesis

ESTROGEN FRACTIONS DURING EARLY REPRODUCTIVE LIFE IN THE ETIOLOGY OF BREAST CANCER

Summary

Experimental studies have shown that, when combinations of the estrogen fractions are administered, the net effect is influenced by the relative amounts of the several fractions as well as by the total dose. Specifically, it appears that the non-carcinogenic, impeded fraction (estradiol) partly inhibits the action of the carcinogenic, unimpeded fractions (estrone, estradiol). However, attempts to demonstrate in the ratio of impeded to unimpeded estrogens between breast cancer cases and controls have been inconclusive. Epidemiological evidence suggests that early reproductive life is a time when events of significance to the future breast-cancer risk occur. In particular, pregnancy at a young age is associated with both favorable estrogen fraction ratios and decreased breast-cancer risk. We therefore suggest that the relative levels of the individual estrogen fractions produced in the first decade or so after puberty are important determinants of a woman's lifetime breast-cancer risk. This hypothesis allows reconciliation of several sets of observations which have previously seemed inconsistent, including the varied results of case-control studies. While a direct test of this hypothesis is not likely to be forthcoming in the next decade, several investigations could be undertaken immediately to provide persuasive evidence for or against it.

Background

In the search for measures to prevent breast cancer, several epidemiological features of the disease stand out because of the extent of the variation in risk which they reveal:

1. The reduction in risk experienced by women who undergo oophorectomy before the age of 40.
2. The life-long reduction in risk associated with pregnancy, particularly pregnancy at an early age.
3. The low incidence of breast cancer in Japan and other Asian and African countries.

The first observation supports the belief that the ovarian hormones play a major role in the induction or maintenance of human breast cancer. Such a role had previously been inferred from the therapeutic effect of oophorectomy in some women with the established disease, and from a substantial accumulation of work with experimental animals. We are now faced with the intriguing problem of reconciling this obvious role of the ovary with the other epidemiological features. It seems paradoxical that the greatly increased production of ovarian hormones during pregnancy should be associated with decreased, rather than increased, risk of breast cancer. If the low breast-cancer rate in Asia is to be explained by the same model, we must account for the relative carcinogenicity of the American and North European ovary in terms of some special characteristic, rather than its principal functions, since the femininity of Asian women is undeniable.

Certain other epidemiological observations point to causal factors operating long before the appearance of clinical cancer. It is generally recognized that induction periods for human neoplasia must be measured in decades, but specifically in breast cancer the significance of the early years of life is suggested by (1) the fact that the increase in incidence seen in British and American women born since 1900 has occurred in a fashion characteristic of their year of birth, rather than of the years in which their breast cancer becomes manifest; and (2) the retention by Japanese migrants to the United States and their daughters of the low incidence characteristic of Japan. That the early reproductive ages are particularly important is suggested by the association of breast-cancer risk with age at first pregnancy. Pregnancies over the age of 25 appear not to exert any protective effect, and women first pregnant before age 20 have about half the risk of those first pregnant after 25 years of age.

Turning to the endocrinological background, it has been shown that women produce three estrogen fractions in substantial amounts—estrone, estradiol, and estriol. During the follicular phase of the menstrual cycle most estrogens is synthesized in the form of estradiol. This is in part converted to estrone in a reversible reaction which establishes an equilibrium between the two. Estradiol is produced almost entirely from the irreversible metabolism of estrone and estradiol. During the luteal phase of the cycle, while production of the other two fractions continues relatively unchanged, the estradiol level increases substantially as the result of its direct synthesis, probably by the corpus luteum. During pregnancy there is an overwhelming rise in the total estrogen output, estriol being increased to a relatively much greater extent than are the other two fractions.

Differences have been demonstrated in the carcinogenic potential of the three estrogens, estrone being a more powerful carcinogen than estradiol, and estriol not having been shown to be carcinogenic. Furthermore, it has been shown that the presence of estradiol inhibits the uterine growth-promoting effect of the estriol fractions and that the relative amounts of these three fractions, as well as the total level of estrogen, are important determinants of the net effect. While this inhibiting effect has not been demonstrated for carcinogenicity specifically, Lemon and his colleagues suggested that women in whom the ratio of estradiol to the other fractions is low might be at high risk of breast cancer. These workers studied this ratio in a series of breast-cancer cases and controls and found lower values in the cases. However, others have found higher values among cases than among controls.

10. Department of Epidemiology, Harvard School of Public Health.
studies reported to date can be criticised on the basis of haphazard selection of subjects, and the numbers of observations have been insufficient to deal adequately with the considerable variation in the oestrogen profile. The fact that some breast tumours themselves produce oestradiol is a further confounding factor. For these reasons, the question of whether breast-cancer patients do show a disturbance in the ratio of the oestrogen fractions must be considered still open. However, the overall impression from the studies reported to date is that differences between cases and controls, if they exist, are likely to be too small to provide a firm substantiation of the hypothesis proposed by Lemon and his colleagues.

Thus, while both the epidemiological and endocrinological approaches have raised interesting questions, neither has provided a useful model for the aetiology of this disease—much less any hint of a practical preventive measure.

THE HYPOTHESIS

Combining the observations from these two fields, we suggest that the relative levels of the oestrogen fractions produced between puberty and about the 25th year of age are crucial determinants of a woman’s lifetime breast-cancer risk.

One can envisage several ways in which an unfavourable ratio of the fractions may come about. Levels of the more carcinogenic fractions, such as oestrone, may be high, or levels of oestradiol may be low. For individual women oestrogen levels may tend to be low all times, during the follicular phase only, during the relatively protected luteal phase only, or during pregnancy. We must also acknowledge the complexity of interactions between ovarian and other endocrine systems and the many mechanisms whereby estrogen balance may be disturbed. The concept we propose is not specific as to the mechanism of production of the unfavourable ratios. We suggest only that, taking this 10-12-year period as a whole, a shift in the ratios of the levels of the oestrogen fractions towards those more carcinogenic is associated with a lifetime increase in breast-cancer risk.

To be useful, a hypothesis must account for observations which were not explained, or not so adequately explained, in its absence. The following are features of breast cancer that are accounted for by this hypothesis:

1. The experimental, clinical, and epidemiological evidence pointing to the importance of the ovary in this disease.
2. The epidemiological evidence already referred to indicating the significance of the experiences of early life in the determination of breast-cancer risk.
3. The paradoxical reduction in risk associated with pregnancy. As noted by Wotiz et al., this is readily explained by the fact that during pregnancy oestradiol is increased to a much greater extent than the other oestrogens.
4. A second paradox developing from the fact that, while pregnancy in humans is protective, pregnancy in mice increases the risk of breast cancer. The hypothesis resolves this apparent inconsistency since the pregnant mouse produces oestrone and oestradiol, but no oestradiol.

5. The hypothesis may also explain the inconclusive results of case-control studies of oestradiol/oestrone ratios in breast-cancer patients. If the significant hormonal relationships are those of early reproductive life they may or may not be reflected in the hormone patterns seen in the age-groups in which the breast cancer becomes manifest. Furthermore, differences between individuals in the degree of protection gained during pregnancy obviously will not be revealed in studies done years later.

While each of these features can also be explained in other ways, we are unaware of any alternative hypothesis that accommodates them all.

A hypothesis is also more tenable if a plausible mechanism can be cited in its support. The work of Dao, and more recently that of Wotiz et al., has provided this, at least for that component of the concept which invokes the relative levels of the oestrogen fractions. Dao’s work with the rat suggested that the incorporation of a potent mammary carcinogen by the breast was impeded by the relatively less carcinogenic, but more abundant, hormones of pregnancy. Wotiz et al. showed that exogenous oestradiol blocked the nuclear incorporation of oestradiol by uterine cells and, possibly, by isolated cells from a breast tumour. A likely mechanism for both sets of observations is that compounds of different carcinogenic potential compete for binding sites at the molecular level.

A mechanism to account for the significance of the early reproductive years is more difficult to identify. The fact that the age under suspicion is 20–50 years prior to the usual appearance of cancer suggests that the mechanism pertains to tumour induction, rather than maintenance. This, of course, does not exclude the existence of oestrogen effects on tumour maintenance, for it is well known that many agents capable of tumour induction also act as promoting agents, and vice versa. Since most oophorectomised are performed in women over 30 years of age, the reduction in the risk of breast cancer among oophorectomised women must be accounted for primarily by mechanisms other than those relevant to this hypothesis. However, there are reasons to suspect that part of this reduction in risk may be due to change in oestrogen fraction balance: (1) the protective effect is particularly strong after oophorectomy in younger women; (2) the adrenal gland, which can produce large amounts of oestradiol in young oophorectomised women, elaborates relatively large amounts of oestradiol. Of course, some women do undergo oophorectomy during the period of high risk of tumour induction; the age at which this period ends no doubt varies, and in some individuals may extend beyond the middle 20s. In any event, a satisfactory explanation of the postulated long incubation period of breast cancer is not available, as with other human tumours in which equally long incubation periods have been clearly demonstrated.

SIGNIFICANCE

We have so far considered this hypothesis as a basis for understanding certain experimental and epidemiological observations.
logical observations. While this provides its scientific interest, it is not where the practical significance lies.

If confirmed, the concept offers the possibility of identifying, during their early reproductive years, a group of women at high risk of breast cancer, and of instituting preventive measures by changing their estrogen profiles with exogenous hormones. The institution of practical preventive measures, as distinct from the mere identification of high-risk women, will require the use of one or more estrogen fractions having little or no carcinogenic potential when given in doses adequate to sustain normal function. While some investigators have expressed the view that the differences in carcinogenicity of the estrogen fractions merely reflect differences in "oestrogen activity", there are grounds for believing that the diverse effects of these compounds are separable, at least quantitatively. The differences in their chemical structures alone are sufficient to suggest specialisation of function. In addition, differential potencies between the fractions are clearly evident with respect to water retention, tissue growth, and other components of the complex of activities subsumed under the term "oestrogen activity". More directly, the idea that carcinogenicity is an inseparable property of "oestrogenicity" is contradicted by the empirical observation that, on an equimolecular basis, oestradiol is the most potent "oestrogen" whereas oestrone is the most potent carcinogen. The hypothesis also has implications for the selection of the estrogen to be used in oral contraceptives. All oral contraceptives now commercially available in the United States use ethyl-n-estradiol or its 3-methoxy congener. This compound has definite carcinogenic potential, having produced tumors of both breast and liver in experimental animals. While oestradiol and its derivatives have been shunned, presumably because of weak estrogenicity, this weakness may in fact be advantageous if inhibition of ovulation requires large doses which simultaneously inhibit the carcinogenic activity of endogenous estrogens.

TESTING THE HYPOTHESIS

As noted previously, attempts to test the relevance of the estrogen fraction ratios to human breast-cancer risk have focused on comparison of affected and unaffected women. The addition of the concept of a specific age-of-risk to the model increases the practical problems of providing a direct test of the hypothesis. A large group of young women will have to be followed over a long period of time after their estrogen profiles have been determined. The determinations can at present be made only on a 24-hour urine, the easiest specimen to collect, and the chemical procedures are technically complex and expensive. Furthermore, the issue cannot be approached by studies in which urines are stored and retrieved for analysis after the identification of the cancer patients, since estrogens deteriorate in storage. The significance of the disease warrants the economic and professional investment required, but, since the question cannot be investigated retrospectively, there seems to be no way to circumvent the inevitably long follow-up period. It therefore seems unlikely that a direct test of the concept can be provided in humans within the next decade or so.

Nevertheless, there are several investigations which would allow indirect evaluation of the hypothesis. Results of these may be sufficient to discard the idea or to encourage greatly augmented efforts to provide the direct test. These investigations include the following:

1. Study of the age trend in the ratios of specific estrogen fractions in women in the reproductive ages. Since breast-cancer risk increases with increasing age at pregnancy, we would predict, under the hypothesis, that either (a) relatively unfavourable ratios of estrogen fractions exist among non-pregnant women in the younger ages (pregnancies at young ages would then be exerting their protective effect during a period of particularly high risk) or (b) the degree of protection conferred by the favourable estrogenic ratio of pregnancy decreases with age. Several investigations have shown low oestriol titres for premenopausal than for postmenopausal women—a trend which if it could be extrapolated to the younger ages would support the hypothesis. However, there are no published data on the variation of estrogen profiles with age during the reproductive years, either in pregnant or in non-pregnant women.

2. A comparison of the estrogen profiles of young women of different nationalities—particularly Japanese and American. Bullbrook et al. compared the ratios of two androstenedione and Japanese women and found a difference. However, in regard to estrogen fractions, there are, in English-language and Japanese reports, only two relevant studies of Japanese women—each based on ten or fewer subjects. The results of these studies are compatible with the hypothesis—the reported ratios of oestriol to oestrone are roughly twice as high as in American and British reports. But it is not clear whether the analytical methods used are comparable; nor are the numbers of subjects sufficient to warrant confidence in the differences observed.

3. Control studies of women with chronic cystic mastitis. Epidemiological similarities, as well as clinical association, between cystic mastitis and breast cancer suggest that the two conditions may have a common hormonal predisposition. Since cystic mastitis appears at a younger age than does breast cancer, patients to the former disease—particularly the younger patients—may more accurately portray the hormone pattern of etiological significance.

There is also need for a large and carefully designed case-control study of the estrogen fractions in breast-cancer patients. However, it is important to note that, for the reasons indicated above, failure to find differences between cases and controls even in a definitive study would not invalidate the hypothesis.

These evaluatory studies would be facilitated by more rapid and accurate methods of estrogen determination. Methods which would allow urinary estrogens to be stored and the development of a method for accurate estimation of circulating estrogens would be of great value.

Nevertheless, the studies proposed are by no means beyond the capability of existing methods and resources. This paper developed during work supported by a project grant (5 P01 CA-06373) from the National Cancer Institute, U.S. Public Health Service. Reprint requests should be sent to P. C. at 606 Huntington Avenue, Boston, Massachusetts 02115, U.S.A.

PHILIP COLE

Brian MacMahan

Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115

