BRID L CANCER INCIDENCE IN WOMEN WITH A HISTORY OF PROGESTERONE DEFICIENCY

L. D. COWAN, * LEON GORDIS, † JAMES A. TONASIA, ‡ and GEORGEANNA SEEGAR JONES

In order to investigate the nature of the association of involuntarily delayed first birth and risk of breast cancer, 1083 white women who had been evaluated and treated for infertility from 1945-1955 were followed prospectively through 1978 to ascertain their breast cancer incidence. These women were categorized as to the cause of infertility into two groups, those with endogenous progesterone deficiency (PD) and those with nonhormonal causes (NH). Women in the PD group had 5.4 times the risk of premenopausal breast cancer compared to women in the NH group. This excess risk could not be explained by differences between the two groups in ages at menarche or menopause, history of oral contraceptive use, history of benign breast disease or age at first birth. Women in the PD group also experienced a 10-fold increase in deaths from all malignant neoplasms compared to the NH group. The incidence of postmenopausal breast cancer did not differ significantly between the two groups.

breast neoplasms; fertility; progesterone

Late age at first birth has been found to be associated with an increased risk of breast cancer in several epidemiologic studies (1, 2). While a late first birth may directly influence breast cancer risk, it has also been recognized that the association of first birth and risk of breast cancer could be an indirect one, with both increased risk of breast cancer and late age at first birth resulting from some underlying hormonal abnormality (2, 3). Ovulatory defects, especially those resulting in inadequate production of progesterone by the corpus luteum, are frequently associated with fertility problems (4). Menstrual cycles which are deficient in the luteal phase also subject the breast to an altered hormonal milieu of persistent estrogenic stimulation (5). Therefore, it has been proposed that the underlying hormonal abnormality which influences both age at first birth and breast cancer risk may be a deficiency of endogenous progesterone production (5).

The present study capitalized on an unusual opportunity to investigate the relationship of the cause of involuntarily delayed first birth and risk of breast cancer.
cancer by studying a population of women who had been evaluated and treated for infertility from 1945 through 1965. These women were subsequently followed through April 1978 in order to compare their incidence of breast cancer and to ascertain their post-treatment pregnancy experience. This study was designed to determine whether women with a history of infertility due to deficient endogenous progesterone production had a greater risk of breast cancer than women whose infertility resulted from nonhormonal factors, regardless of their age at first birth.

METHODS

Study population. The study group consisted of women who were evaluated and treated for infertility from 1945 through 1965 at The Johns Hopkins Private Obstetrics and Gynecology Clinic. Clinic records of all infertility patients were reviewed in order to identify women who met all of the study's inclusion criteria (table 1). Data concerning results of diagnostic tests, medical history, diagnoses and treatment were collected from the records of all 1083 eligible subjects. Direct measures of hormonal function, such as estriol ratios or pregnanediol levels, were not collected for use in this study since such measurements had not been uniformly done on all patients and laboratory methods had changed over time.

Based on the information collected from the subjects' clinical records concerning the cause of infertility, women were divided into two major study groups:

1) Progesterone-deficient (PD) group: women ever diagnosed as having deficient endogenous progesterone production. Classification was based on the results of timed endometrial biopsies, tests of cervical mucus, basal body temperature charts, and the presence of conditions such as luteal phase defects, aluteal cycles or Stein-Leventhal syndrome.

2) Nonhormonal (NH) group: women whose infertility was not related to hormonal factors. These women were considered to have normal hormonal function on the basis of the same clinical tests and diagnostic data described above. The causes of infertility represented in the nonhormonal group included uterine, cervical, peritoneal and/or tubal factors, genetic factors, or no specific etiologic factors identified (all diagnostic tests normal).

Women were categorized according to the cause of infertility without knowledge of their follow-up responses or survivorship status. Women whose infertility resulted from other hormonal abnormalities such as premature menopause (n = 23) and women who could not be classified due to insufficient diagnostic testing (n = 15) were only included in the analysis of breast cancer incidence by age at first birth, when cause of infertility was not a factor.

Follow-up data collection. The follow-up phase of the study was carried out over a 16-month period which ended in April 1978. Breast cancer incidence, subsequent to the subject's first clinic visit, was ascertained through a mailed questionnaire which dealt with reproductive, menstrual and medical histories. Re-
cted for use in this study since measurements had not been uni-
me on all patients and laboratory had changed over time.
the information collected from sets’ clinical records concerning
of infertility, women were di-
to two major study groups:
gesterone-deficient (PD) group
ver diagnosed as having deficient
ous progesterone production.
ution was based on the results of
ometrial biopsies, tests of cervi-
as, basal body temperature charts,
rence of conditions such as
ase defects, aluteal cycles or
thral syndrome.
~noral (NH) group: women
fertility was not related to hor-
tors. These women were consid-
normal hormonal function on
of the same clinical tests and
data described above. The
~ infertility represented in the
onal group included uterine
rtoneal and/or tubal factors,
tors, or no specific etiologic fac-
tified (all diagnostic tests
were categorized according to
f infertility without knowledge
look-up responses or recover-
ns. Women whose infertility re-
other hormonal abnormalities
aturity menopause (n = 22)
en who could not be classified
sufficient diagnostic testing (n =
ly included in the analysis of
cancer incidence by age at first
cause of infertility was not a

up data collection. The follow-up
the study was carried out over a
period which ended in April
est cancer incidence, sub-
the subject’s first clinic visit,
tained through a mailed ques-
which dealt with reproductive
al and medical histories. Re-
peated mailings were supplemented with
phone contacts to maximize responses.
The staff who conducted the follow-up
phase of the study were not aware of the
bjects’ classification as to cause of in-

Validation of diagnosis. An attempt
was made to validate each reported case
of cancer by contacting the attending
physician and the hospital where the
woman was treated. Validation informa-
tion was obtained for 14 (82 per cent)
of the 17 reported breast cancer cases. All 14
cases were confirmed by the attending
physician and/or the hospital where the
subject reported having been treated. In
addition, death certificates were obtained
for 26 of the 27 ascertained deaths.

Analyses. Chi-square tests were used to
determine whether the distributions of
selected characteristics differed in the PD
and NH groups. Continuous data such as
age were grouped into appropriate inter-
vals (6). Differences in mean values were
evaluated by Student’s t-test (6). Maxi-
num likelihood estimates of the ratios
of mortality and incidence rates in the
PD versus the NH group, standardized
for age and year of entry into the study,
were computed using a log-linear Pois-
son model (7). The age- and calendar-
year-specific rates for the PD and NH
groups combined were used as the stan-
def for adjustment. Exact 95 per cent
confidence limits on the standardized
ratios were calculated according to the
method described for determining con-
fidence limits on the ratio of two Poisson
variables (8).

The incidence of breast cancer in both
the PD and NH groups was also compared
to that of the general population, using
age-and calendar-year-specific rates from
the New York State Cancer Registry (9)
and the Connecticut Cancer Registry
(10–12) to compute expected numbers of
events (13). Ninety-five per cent confi-
dence limits on the ratio of observed to
expected events were calculated by treat-
ing the observed numbers of events as
Poisson variables (14).

Person-years of observation for all
women were included in the calculation
of mortality rates. Women who were lost to
follow-up were withdrawn from the
person-years computation as of the date of
their last clinic visit. Incidence rates were
based only on the person-years of observa-
tion in those women for whom follow-up
data were available.

Incident cancer cases include cancer
deaths if the onset of disease was after
the start of the study. The date of first diag-
nosis was not known for five of the nine
women who died of cancer. Thus, when
calculating incidence rates, the date of
onset for these women was taken to be the
date of death. This allowed them to con-
tribute more years of observation to the
denominator of the rates than if the ear-
ier date of onset had been known,
thereby making the rates very slightly
lower than they would have been if exact
dates were known.

Breast cancer cases were categorized as
either premenopausal or postmenopausal
by comparing reported age at menopause
and age at diagnosis for each case.
Women whose breast cancer was detected
at the same age as their reported age at
menopause (peri-menopausal onset) were
considered to have developed the disease
prior to menopause.

RESULTS

Of the 1083 women eligible for study,
878 (81 per cent) were successfully located
during the follow-up phase. Of these, 722
(67 per cent) completed the questionnaire,
27 (2 per cent) were deceased and 129 (12
per cent) did not wish to participate in the
study.

Women who were traced and those not
traced were compared and were not found
to differ significantly in age at first
clinic visit or cause of infertility. How-
ever, more of the women who could not be
located had had their first clinic visit dur-
ing the last interval of the study period (i.e., 1960–1965), suggesting that they were probably younger at the time of follow-up and therefore would have contributed few cases of breast cancer to the study. The distribution by cause of infertility of the 722 respondents was identical to that of the 1083 women in the total study group.

Overall mortality. Women in the PD group had a significantly higher (more than threefold) death rate for all causes of death combined compared to that for women in the NH group (table 2). The excess risk of death from all causes among women in the PD group was due largely to a 10-fold excess risk of death from neoplasms. The types and number of neoplasms reported on death certificates were: breast (one), thyroid (one), malignant melanoma (one), colon (two), brain (one), and leukemia (two) in the PD group and leukemia (one) in the NH group. The two groups did not differ significantly in their risk of death from causes other than cancer.

Incidence of cancer. The standardized incidence of all cancer in the PD group was 1.8 times that in the NH group (table 3). However, the confidence limits included the value 1.0 (0.88–4.0).

Incidence of breast cancer. Women in the PD group had 1.8 times the risk of developing breast cancer compared to women in the NH group, but the difference in risk was not statistically significant (table 3). However, when standardized incidence ratios were calculated separately for pre- and postmenopausal breast cancer, the risk of premenopausal breast cancer was 5.4 times greater for women in the PD group than for those in the NH group (table 4). No significant difference in risk of postmenopausal breast cancer was observed between the two groups. The mean age at diagnosis for premenopausal cases was 42.5 years in the PD group and 41.5 years in the NH group. For postmenopausal breast cancer, the PD case was 48 years of age and the mean age at diagnosis in the NH group was 52.6 years.

Women were then categorized by age at first birth on the basis of their post-treatment pregnancy experience. Only women who reported having had pregnancies lasting five months or longer were considered parous. Table 5 shows

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of the mortality experience of the progesterone-deficient (PD) and nonhormonal (NH) groups</td>
</tr>
<tr>
<td>Cause of death</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. of deaths</td>
</tr>
<tr>
<td>Crude rate per 100,000 person-years†</td>
</tr>
<tr>
<td>Standardized ratio of rates (PD:NH)</td>
</tr>
<tr>
<td>95% confidence limits on ratio</td>
</tr>
</tbody>
</table>

* The other causes of death and number of deaths in each group were: diabetes (2 PD), cardiovascular disease (2 PD, 2 NH), suicide (3 PD, 2 NH), diseases of the digestive system (2 PD, 1 NH) and other (2 PD, 1 NH).

† Based on 7607 person-years of observation in 433 women in the PD group and 9029 person-years of observation in 520 women in the NH group.
however, the confidence limits increased to 1.0 (0.88–4.0).

The incidence of breast cancer. Women in the PD group had 1.8 times the risk of breast cancer compared to those in the NH group, but the difference was not statistically significant (p = 0.3). However, when standard incidence ratios were calculated separately for pre- and postmenopausal women, the risk of premenopausal breast cancer was 5.4 times greater in the PD group than for those in the NH group (Table 4). No significant difference in the risk of postmenopausal breast cancer was observed between the two groups. The mean age at diagnosis for premenopausal cases was 42.5 years in the PD group and 41.5 years in the NH group, while the mean age at diagnosis in the NH group was 48 years and those cases were detected in the PD group.

Women were then categorized by age at parity based on their post-pregnancy experience. Only 30% of those who reported having had preterm deliveries lasting five months or longer were considered parous. Table 5 shows the incidence of breast cancer in the PD and NH groups.

Table 3
Comparison of cancer incidence in the progesterone-deficient (PD) and nonhormonal (NH) groups

<table>
<thead>
<tr>
<th>Group</th>
<th>All cancers*</th>
<th>Breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>100/100,000 person-years</td>
<td>160.0</td>
</tr>
<tr>
<td>NH</td>
<td>100/100,000 person-years</td>
<td>89.0</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.76</td>
<td>1.8</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.88–4.0)</td>
<td>(0.57–6.1)</td>
</tr>
</tbody>
</table>

* The types of cancer and number of cases in each group were: uterine corpus (2 PD, cervix in situ (2 PD), ovary (1 NH), chorioncarcinoma (1 PD), breast (10 PD, 7 NH), thyroid (1 PD, 2 NH), malignant melanoma (2 PD, 1 NH), colon (2 PD), breast and leukemia (2 PD, 2 NH). Cancer deaths are included if the onset of disease was after the start of the study.

†Based on 6355 person-years of observation in 329 women in the PD group and 7374 person-years of observation in 381 women in the NH group.

Table 4
Comparison of pre- and postmenopausal breast cancer incidence in the progesterone-deficient (PD) and nonhormonal (NH) groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Premenopausal onset</th>
<th>Postmenopausal onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>14.5/100,000 person-years</td>
<td>15.7</td>
</tr>
<tr>
<td>NH</td>
<td>27.1/100,000 person-years</td>
<td>67.8</td>
</tr>
<tr>
<td>Ratio</td>
<td>5.4</td>
<td>0.3</td>
</tr>
<tr>
<td>95% CI</td>
<td>(1.1–49)</td>
<td>(0.01–2.9)</td>
</tr>
</tbody>
</table>

Table 5
Comparison of breast cancer incidence by parity and age at first birth

<table>
<thead>
<tr>
<th>Nulliparous First birth</th>
<th>First birth</th>
<th>First birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nulliparous first birth <30</td>
<td>0.67</td>
<td>0.63</td>
</tr>
<tr>
<td>Nulliparous first birth ≥30</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>First birth <30</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>≥30 years</td>
<td>0.63</td>
<td>0.63</td>
</tr>
</tbody>
</table>

* Two additional cases of breast cancer, whose infertility was due to causes other than progesterone deficiency or nonhormonal factors, are included in these comparisons.

†n = number of women; PY = person-years of observation.
the standardized incidence ratios for breast cancer by age at first birth. The relative risk for nulliparous women was 13–37 per cent lower than that for parous women, while women whose first birth occurred before age 30 experienced almost a 30 per cent reduction in risk of breast cancer compared to women with a later first birth. However, none of these differences were statistically significant.

The relative risk of premenopausal breast cancer in the PD group compared to the NH group was then assessed within each parity-age stratum (table 6). Women in the PD group had consistently higher relative risks of premenopausal breast cancer within each stratum. There were too few cases of postmenopausal breast cancer to allow for a similar comparison.

The risk of breast cancer in the NH group was comparable to that in the general population (table 7). However, the PD group had a relative risk of breast cancer 2.0 to 2.6 times that of the reference populations. Similar results were obtained when the analysis was restricted to

Table 6

<table>
<thead>
<tr>
<th>Nulliparous</th>
<th>Parous <30</th>
<th>Parous ≥30</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>NH</td>
<td>PD</td>
</tr>
<tr>
<td>(n = 105; 105; 116; 114)</td>
<td>(n = 305; 305; 2555; 2555)</td>
<td>(n = 105; 114; 2332; 2332)</td>
</tr>
<tr>
<td>No. of cases</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Crude rate per 100,000 person-years</td>
<td>102.4</td>
<td>32.3</td>
</tr>
<tr>
<td>Standardized ratio of rates (PD:NH)</td>
<td>2.6</td>
<td>3.1</td>
</tr>
<tr>
<td>95% confidence limits on ratio</td>
<td>(0.16–166)</td>
<td>(0.24–155)</td>
</tr>
</tbody>
</table>

* n = number of women; PY = person-years of observation.

Table 7

<table>
<thead>
<tr>
<th>PD group (n = 329; PY = 63654)</th>
<th>NH group (n = 381; PY = 7374)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using New York State Cancer Registry (exclusive of New York City)</td>
<td>Using Connecticut Cancer Registry</td>
</tr>
<tr>
<td>O</td>
<td>E</td>
</tr>
<tr>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>7</td>
<td>4.7</td>
</tr>
</tbody>
</table>

* Observed number of cases.
† Expected number of cases, based on rates from specified source, adjusted for age and calendar year.
‡ Ninety-five per cent confidence limits on ratio O:E.
§ n = number of women; PY = person-years of observation.
ONES

-age stratum (table 6). Women group had consistently higher risks of premenopausal breast cancer in each stratum. There were a higher number of breast cancer cases among the NH women than among the PD women. However, the relative risk of breast cancer was 2.6 times that of the reference group. Similar results were observed in all the analyses.

Breast Cancer Incidence and Progesterone Deficit

Cases whose onset was before age 45 years (an approximation of premenopausal disease).

Other comparisons of PD and NH women. As seen in table 8, respondents in the PD and NH groups generally did not differ on the basis of characteristics previously reported to be associated with an increased risk of breast cancer. However, women in the PD group had significantly more pregnancies and more pregnancies lasting five months or longer than did women in the NH group. In addition, PD women tended to be younger at the time of their first clinic visit and at the time of their first term birth.

Discussion

In the present study, women with a history of deficient endogenous progesterone production had a fivefold excess risk of premenopausal breast cancer compared to women without such history. This result is particularly striking since the PD group had fewer nulliparous women and fewer women with a late first birth than women in the NH group and therefore would be expected to be at a lower risk of breast cancer.

Alternative explanations for this observed association were sought by making a variety of comparisons between women in the PD and NH groups. The relationship of deficient progesterone production and increased risk of premenopausal breast cancer does not appear to be due to any difference between the two groups in other previously identified risk factors. The follow-up was conducted without knowledge of the subjects' hormonal status.

Table 8

Comparison of selected characteristics of questionnaire respondents in the progesterone-deficient (PD) and nonhormonal (NH) groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PD group (n = 310)</th>
<th>NH group (n = 374)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menstrual history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menarche before age 14 years</td>
<td>76%</td>
<td>80%</td>
</tr>
<tr>
<td>Postmenopausal at follow-up</td>
<td>43%</td>
<td>40%</td>
</tr>
<tr>
<td>Natural menopause</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>Menopause before age 45 years</td>
<td>38%</td>
<td>34%</td>
</tr>
<tr>
<td>Marital and pregnancy history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at first marriage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>22.3</td>
<td>22.9</td>
</tr>
<tr>
<td>% <24 years</td>
<td>70%</td>
<td>63%</td>
</tr>
<tr>
<td>Age at first birth</td>
<td>29.4</td>
<td>36.0</td>
</tr>
<tr>
<td>Mean</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>% >34 years (of those parous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravidity</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Mean*</td>
<td>20%</td>
<td>34%</td>
</tr>
<tr>
<td>% nulligravida*</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Parity</td>
<td>26%</td>
<td>42%</td>
</tr>
<tr>
<td>% nulliparous*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age at follow-up (years)*</td>
<td>46.6</td>
<td>47.8</td>
</tr>
<tr>
<td>Mean years of follow-up</td>
<td>19.6</td>
<td>19.3</td>
</tr>
<tr>
<td>Education >12 years</td>
<td>43%</td>
<td>44%</td>
</tr>
<tr>
<td>Ever used oral contraceptives</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Reporting lump in the breast</td>
<td>23%</td>
<td>20%</td>
</tr>
</tbody>
</table>

* p = 0.05.
status, and the length of follow-up and per cent of women lost to follow-up were comparable in the two groups. In addition, the PD and NH groups did not differ significantly in their risk of cancers other than breast or in their risk of death from causes other than neoplasms.

One possibility, which could not be completely ruled out, is that the difference in risk of premenopausal breast cancer could have been due to the administration of progestational agents, since progesterone deficiency and the therapeutic use of exogenous progesterone or progestogens were highly correlated. However, of the nine women with premenopausal breast cancer in the PD group, two did not receive any progestational agents, and of those treated, only one woman received progesterone supplementation for more than six monthly cycles. In view of the minimal exposure in most women, it is difficult to attribute the excess risk of premenopausal breast cancer in the PD group to use of progestational agents.

Age at first birth was not significantly associated with risk of breast cancer in the present study. This may have been due to the fact that there were too few cases of breast cancer to allow for more than a dichotomization of age at first birth into <30 years old and ≥30 years old. However, similar results have also been reported from the prospective study by Bibbo et al. (15). The observation that women in the PD group had consistently higher risks of premenopausal breast cancer compared to women in the NH group within each age-at-first-birth stratum suggests that the underlying cause of a delayed first birth may be independently associated with risk of breast cancer.

Sherman and Korenman (5) have suggested that in the absence of sufficient cyclic progesterone production, the breast is exposed to a continuous, unopposed estrogen stimulus and that under conditions of altered ovarian function, the breast may also be subjected to the products of disordered secretion of numerous ovarian and pituitary hormones. The evidence for a protective role for progesterone is conflicting, however. A number of studies have found no significant differences in serum progesterone or urinary pregnanediol levels when comparing breast cancer cases and controls (16), parous and nulliparous women (17), daughters of breast cancer cases and daughters of controls (18) or breast cancer free Japanese and British women of varying ages (19). However, Kodama et al. (20) found significantly reduced follicular and luteal phase pregnanediol levels in Japanese premenopausal breast cancer cases compared to controls from an urban area. Luteal phase plasma progesterone levels have also been reported to be significantly lower in women with benign breast diseases than in a group of normal controls (21). Bulbrook et al. (22) found significantly lower plasma progesterone levels and a higher frequency of anovulatory cycles in premenopausal women considered to be at high risk of breast cancer when compared with low-risk women. They observed no difference in progesterone levels in postmenopausal women.

In addition to the excess risk of premenopausal breast cancer, women in the PD group also had a 10-fold increase in risk of death from malignant neoplasms. It is not clear why the death rate was higher in the PD group than in the NH group since the incidence rates for all cancers were not significantly different. Differential ascertainment of deaths may have produced the observed difference in cancer death rates. However, this explanation appears unlikely since the follow-up was conducted without knowledge of the subjects’ hormonal status and the completeness and intensity of tracing efforts did not differ between the two groups.
If the excess in cancer deaths in the PD group is real, several explanations can be proposed. First, it is possible that women in the PD group tended to develop types of cancers which have higher case fatality rates. However, the data do not support this. Second, cancers occurring in women with altered ovarian function may be, in general, less responsive to treatment and therefore more likely to be fatal. The observation that breast cancer patients with anovular menstrual cycles were less likely to experience a long-lasting tumor regression after oophorectomy than were patients with normal cycles (23) provides some evidence to support this contention.

While the results of the present study suggest that progesterone deficiency is associated with an increased risk of premenopausal breast cancer, this investigation is one of the first prospective studies of its kind and the numbers of breast cancer cases and cancer deaths were small. Therefore, additional studies in this area will be needed to either confirm or refute the results of the present study and to investigate further the role of altered hormone production or metabolism in the development of both pre- and postmenopausal breast cancer.

REFERENCES