Effects of estriol on cell viability and 1,25-dihydroxyvitamin D$_3$ receptor mRNA expression in cultured human osteoblast-like cells

Y. Yamanaka, H. Matsuo, S. Mochizuki, S. Nakago, S. Yoshiida and T. Maruo

Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan

Key words: HUMAN OSTEOBLAST-LIKE CELLS, 1,25-DIHYDROXYVITAMIN D$_3$ RECEPTOR, CELL VIABILITY, ESTRiol, 17β-ESTRADIOL

ABSTRACT

It is clinically evident that administration of estriol (E$_3$) increases the bone mass density of the lumbar vertebrae in postmenopausal women, and that combined treatment with estrogen and 1,25-dihydroxyvitamin D$_3$ (VD$_3$) increases femoral neck bone mass density compared with treatment with estrogen alone in postmenopausal osteoporotic women. However, the molecular mechanism whereby treatment with E$_3$ affects osteoblast cell function is still unknown. This study was conducted first to examine the comparative effects of E$_3$ and VD$_3$ on the cell viability of cultured human osteoblast-like cells (HOS) and second to determine whether E$_3$ affects VD$_3$ receptor mRNA expression in HOS. The cell viability and VD$_3$ receptor mRNA expression of cultured HOS were assessed by MTT assay and semi-quantitative reverse transcriptase-polymerase chain reaction with Southern blot analysis, respectively. The treatment with E$_3$ increased the cell viability of cultured HOS compared with untreated control cultures. The increase in cell viability caused by the treatment with E$_3$ was further augmented by the combined treatment with VD$_3$. The addition of either E$_3$ (3.52 × 10$^{-8}$ mol/l) or E$_3$ (3.52 × 10$^{-7}$ mol/l) to cultured HOS for 24 h resulted in a fourfold and eightfold increase, respectively, in VD$_3$ receptor mRNA expression in HOS, compared with that in untreated control cultures. These results suggest that E$_3$ may up-regulate the cell viability of osteoblast cells, and that the concomitant treatment with E$_3$ and VD$_3$ further augments the cell viability being associated with an E$_3$-induced increase in VD$_3$ receptor mRNA expression in those cells.

INTRODUCTION

The loss of bone mass that occurs in postmenopausal women can be attributed to lack of estrogen. This is confirmed by the clinical observation that postmenopausal osteoporosis can be successfully prevented by estrogen replacement therapy. 17β-Estradiol (E$_2$) has an important role in the prevention of postmenopausal osteoporosis1,2. E$_2$ inhibits bone resorption and stimulates bone formation in the tibia and femur in ovariectomized rats by promoting calcium absorption in the intestine3,4. E$_2$ also exerts an inhibitory effect on bone resorption via the estrogen receptor detected in rat osteoblast-like cells and normal human osteoblasts5,6. The suppression of bone resorption is attributed to inhibition of
bone-resorbing cytokine action on bone-marrow stromal cells and osteoblasts. The E2-induced increase in cell proliferation of osteoblasts might be mediated by insulin-like growth factor I (IGF-I), induced by E2.

Recently, Tuppurainen et al. showed that combined treatment with E2 and 1,25-dihydroxyvitamin D3 (VD3) further increases femoral neck bone mass density in osteoporotic women compared with treatment with E2 alone. Several reports have shown that E2 increases the number of VD receptors in the rat uterus, liver and kidney, and in human breast cancer cells. It has also been reported that E2 increases the number of VD receptors in the ROS 17/2.8 cell line and the VD receptor mRNA levels in human osteosarcoma cells (MG-63).

Estriol (E3) is an estrogen with fewer adverse effects on endometrial proliferation, and it requires no combined use of progesterin when used for hormone replacement therapy. For hormone replacement therapy, E3 is an alternative agent to E2. However, the molecular mechanism whereby E3 affects osteoblast cell function is still unknown. The present study was conducted in order to examine the effects of E3 on the cell viability of cultured human osteoblast-like cells (HOS), and to determine whether E3 affects the VD receptor mRNA expression in HOS.

MATERIALS AND METHODS

Materials

VD3 was purchased from Chugai Pharmaceutical Co., Ltd (Tokyo, Japan). E2 and were obtained from Sigma (St Louis, MO, USA) and Mochida Pharmaceutical Co., Ltd (Tokyo, Japan), respectively. The sources of other materials used were as follows. Fetal bovine serum (FBS) and Dulbecco’s Modified Eagle Medium (DMEM) were purchased from Life Technologies, Inc. (Grand Island, NY, USA) and Sigma (St Louis, MO, USA), respectively. Penicillin and streptomycin were obtained from Invitrogen Corp. (Carlsbad, CA, USA). HOS was purchased from Dainippon Pharmaceutical Co., Ltd (Tokyo, Japan).

Cell culture

HOS was subcultured in 1.0 x 10^5-mm^3 plastic culture flasks at 37°C in a 5% CO2 humidified atmosphere in phenol-red-free DMEM supplemented with 10% dextran-coated charcoal-stripped FBS, penicillin (100 IU/ml) and streptomycin (100 μg/ml). At approximately 60-70% confluence, the cultured medium was stepped down to serum-free conditions by incubating the cells in serum-free DMEM in the absence or presence of E2 (3.67 x 10^-8 mol/l), E3 (3.52 x 10^-8 or 3.52 x 10^-7 mol/l) and VD3 (10^-9 mol/l) for indicated periods of time (24 h to 72 h).

MTT assay for cell viability

HOS cell number and viability were evaluated by means of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay using the Mosmann method. This assay was based on the cleavage of the tetrazolium salt MTT to a blue formazan product by mitochondrial dehydrogenase in viable cells. Briefly, after being treated in the absence or presence of E2 (3.67 x 10^-8 mol/l), E3 (3.52 x 10^-8 or 3.52 x 10^-7 mol/l) and VD3 (10^-9 mol/l) in serum-free DMEM for 24-72 h in 96-well tissue-culture plates, 10 μl of MTT (Sigma, St Louis, MO, USA) solution was added to each well, and cultured cells were incubated at 37°C for another 4 h. Then 100 μl of isopropanol/HCl solution was added to each well and mixed thoroughly with an EM-36N microtube mixer (Taitec, Tokyo, Japan). The absorbance was measured by an MTP-120 ELISA plate reader (Corona Electric Co., Osaka, Japan) with a test wavelength of 570 nm and a reference wavelength of 630 nm. These experiments with HOS were repeated at least three times with similar results.

Semi-quantitative RT-PCR with Southern blot analysis

The cells were seeded on to 1.0 x 10^5-mm^3 culture plates and cultured until subconfluence (approximately 8 x 10^4 cells/cm^2). Thereafter, the cells were stepped down to serum-free conditions by being incubated in serum-free DMEM in the absence or presence of E2 (3.67 x 10^-8 mol/l), or E3 (3.52 x 10^-8 or 3.52 x 10^-7 mol/l) for 24-48 h. Total RNA was isolated from HOS cultured by the guanidinium thiocyanate and phenol/chloroform method. First-strand complementary DNA (cDNA) was synthesized from 4 μg of total RNA using a cDNA synthesis kit (QIAGEN GmbH, Hilden, Germany).
The polymerase chain reaction (PCR) was performed using 1 μl of cDNA as template, 6.25 pmol/l of each primer, 2.5 pmol/l dNTPs, 0.125 U Taq DNA polymerase (Roche-Diagnostics GmbH, Mannheim, Germany), 1X reaction buffer containing 10 mmol/l Tris-HCl, pH 8.3, 50 mmol/l of KCl, 1.5 mmol/l of MgCl₂ and 0.01% gelatin in a reaction volume of 25 μl. The primers that were used to amplify the VD₃ receptor cDNA were 5'-CAACAAAGACTACAAAGTCGCGTCAGTGA-3' (sense) and 5'-GTGAGGAGGGTCTGCTGAGTAG-3' (antisense)². The sense primer annealed to 982-1011, while antisense corresponded to bases 1471-1491 of the VD₃ receptor's cDNA. The length of the expected PCR product was 510 base pairs (bp). PCR amplification was performed using a GeneAmp PCR System 9600-R (Perkin Elmer Corp., Norwalk, CT, USA). The amplification procedure included an initial denaturation step at 94°C for 5 min and 30 cycles, as follows: denaturation step at 94°C for 30 s, annealing step at 55°C for 30 s and extension step at 72°C for 30 s. The sequence of the primer used to amplify the housekeeping β-actin gene was 5'-CTTCTACATGAGCTGCGTG-3' (sense) and 5'-TCATGAGGATGTCAGTCAGG-3' (antisense). The sense primer annealed to bases 308-327, while the antisense primer corresponded to bases 593-612 of the β-actin gene. The length of the expected PCR product was 305 bp. The amplification procedure included an initial denaturation step at 94°C for 5 min and 15 cycles, as follows: denaturation step at 94°C for 30 s, annealing step at 55°C for 30 s, extension step at 72°C for 30 s.

To allow the quantification of the VD₃ receptor mRNA expression, Southern blot analysis was used. The amplified products were electrophoresed on 3% agarose gel, and after denaturation with alkaline solution they were transferred to a nylon membrane filter for Southern blotting. After transfer, the DNA was fixed by UV irradiation, and hybridization was performed using the 5²³²P-end-labeled oligonucleotide probe. The conditions for hybridization were prehybridization at 65°C for 2 h and hybridization at 65°C for 18 h. The probe specific for β-actin was prepared with a full-length cDNA of β-actin labeled with ³²P. The washing conditions were as follows: saline sodium citrate (SCC = 300 mmol/l NaCl and 30 mmol/l trisodium citrate, pH 7.0), 0.1% sodium dodecyl sulfate (SDS) at room temperature for 20 min, performed twice, and SCC (30 mmol/l NaCl and 3 mmol/l trisodium citrate, pH 7.0) and 0.1% SDS at 60°C for 5 min.

After washing, the blot was exposed to X-ray film for 3 h. The film was scanned on Scanjet 3C/ADF (Hewlett Packard, Miami, FL, USA), and the strength of the signal was measured by NIH Image version 1.58. The amount of VD₃ mRNA was expressed relative to the amounts of β-actin mRNA present in each specimen.

Statistical analysis

The data collected are shown as mean values ± SD from at least three independent experiments. Statistical significance was evaluated using two-way analysis of variance (ANOVA). Differences with a p-value of < 0.05 were considered to be statistically significant.

RESULTS

Effects of E₂, E₃ and VD₃ on cell viability

The treatment with E₂ (3.67 × 10⁻⁸ mol/l) resulted in a significant increase in the cell viability of cultured HOS compared with untreated control cultures at 24 h exposure, but did not do so at 48 h or 72 h exposure. The treatment with either E₃ (3.52 × 10⁻⁸ mol/l) or E₃ (3.52 × 10⁻⁷ mol/l) also significantly increased the cell viability of cultured HOS compared with untreated control cultures throughout 24-72 h exposure (Figure 1). The treatment with VD₃ (10⁻⁹ mol/l) exerted similar stimulatory effects on cell viability to those observed with E₃ (3.52 × 10⁻⁸ mol/l). The combined treatment with E₂ (3.67 × 10⁻⁸ mol/l) and VD₃ (10⁻⁹ mol/l) further increased the cell viability of cultured HOS compared with the treatment with E₂ (3.67 × 10⁻⁸ mol/l) alone or VD₃ (10⁻⁹ mol/l) alone throughout 24-72 h exposure. The increase in cell viability of cultured HOS caused by the treatment with E₃ (3.52 × 10⁻⁸ mol/l) alone was also further augmented in response to the concomitant treatment with VD₃ (10⁻⁹ mol/l) at 72 h exposure. Compared with the combined treatment with E₃ (3.52 × 10⁻⁸ mol/l) and VD₃ (10⁻⁹ mol/l), the combined treatment with E₂ (3.67 × 10⁻⁸ mol/l) and VD₃ (10⁻⁹ mol/l) had a higher cell viability of cultured HOS at 24 h exposure, but did not do so at 48 h and 72 h exposure (Table 1).
Effect of estriol on HOS

Yamanaka et al.

![Graph showing the effect of estriol on HOS cell viability](image)

Figure 1 Effects of 17β-estradiol (E2) and estriol (E3) on the cell viability of cultured human osteoblast-like cells (HOS) assessed by MTT assay. Treatment with E2 (3.67 × 10⁻⁸ mol/l) or E3 (3.52 × 10⁻⁸ or 3.52 × 10⁻⁷ mol/l) alone was carried out for 24–72 h in serum-free conditions. Values are presented as the mean values ± SD from three independent experiments. *p < 0.05 vs. control cultures.

Table 1 Effects of 17β-estradiol (E2), estriol (E3) and 1,25-dihydroxyvitamin D₃ (VD₃) on cell viability of cultured human osteoblast-like cells (HOS) assessed by MTT assay

<table>
<thead>
<tr>
<th>Exposure time</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.059 ± 0.011</td>
<td>0.120 ± 0.019</td>
<td>0.108 ± 0.011</td>
</tr>
<tr>
<td>VD₃ (10⁻² mol/l)</td>
<td>0.088 ± 0.010*</td>
<td>0.144 ± 0.017*</td>
<td>0.129 ± 0.018*</td>
</tr>
<tr>
<td>E₂ (3.52 × 10⁻⁸ mol/l)</td>
<td>0.072 ± 0.008*</td>
<td>0.134 ± 0.025</td>
<td>0.123 ± 0.019</td>
</tr>
<tr>
<td>E₃ (3.67 × 10⁻⁸ mol/l)</td>
<td>0.084 ± 0.010*</td>
<td>0.155 ± 0.015*</td>
<td>0.128 ± 0.014*</td>
</tr>
<tr>
<td>E₂ (3.52 × 10⁻⁸ mol/l) + VD₃ (10⁻² mol/l)</td>
<td>0.121 ± 0.030††</td>
<td>0.179 ± 0.019††</td>
<td>0.147 ± 0.014††</td>
</tr>
<tr>
<td>E₃ (3.67 × 10⁻⁸ mol/l) + VD₃ (10⁻² mol/l)</td>
<td>0.089 ± 0.011</td>
<td>0.160 ± 0.021</td>
<td>0.147 ± 0.018**</td>
</tr>
</tbody>
</table>

Values are presented as the mean values ± SD from three independent experiments. *p < 0.05 vs. control; †p < 0.05 vs. VD₃ alone; ††p < 0.05 vs. E₂ alone; **p < 0.05 vs. E₃ alone; †††p < 0.05 vs. combined treatment with E₃ and VD₃.

Effect of E₂ and E₃ on VD₃ receptor mRNA expression

Densitometric quantification of VD₃ receptor mRNA with a molecular basis of 510 bp produced by semi-quantitative reverse transcriptase (RT)-PCR with Southern blot analysis revealed that the treatment with either E₂ (3.67 × 10⁻⁸ mol/l) alone or E₃ (3.52 × 10⁻⁸ or 3.52 × 10⁻⁷ mol/l) alone resulted in a twofold, fourfold and eightfold increase, respectively, in VD₃ receptor mRNA expression in cultured HOS at 24 h exposure compared with untreated control cultures (Figure 2a). By contrast, at 48 h exposure, no such increases in VD₃ receptor mRNA expression in cultured HOS were noted with the treatment with either E₂ alone or E₃ alone (Figure 2b).

DISCUSSION

This study has demonstrated that the treatment with E₃ increases the cell viability of cultured HOS compared with untreated control cultures, that combined treatment with E₃ and VD₃ increases the
Figure 2 Effects of 17-β-estradiol (E2) or estriol (E3) on VDR receptor (VDR) mRNA expression in cultured human osteoblast-like cells (HOS) analyzed by semi-quantitative RT-PCR and Southern blot. HOS were exposed to either E2 (3.67 x 10^{-8} mol/l) or E3 (3.52 x 10^{-8} or 3.52 x 10^{-7} mol/l) for (a) 24 h and (b) 48 h. The amount of mRNA was expressed relative to the abundance of β-actin mRNA. Data are presented as the fold increase over the control value and as the mean values ± SD from three independent experiments. *p < 0.05 vs. control cultures.

cell viability relative to the treatment with E3 alone, and that treatment with E3 substantially increases VDR receptor mRNA expression in those cells. These findings suggest that E3 exerts direct effects on osteoblast function, and that an interaction between E3 and VDR receptors occurs in cultured HOS.

Nishibe et al.\(^{25}\) showed that the administration of E3 increases bone mass density of the lumbar vertebrae in postmenopausal women. E3 has been considered to be an estrogen with a much weaker stimulatory effect on endometrial proliferation. Accordingly, E3 therapy is associated with less frequent genital bleeding and requires no concomitant use of progestin. Nevertheless, Weiderpass et al.\(^{24}\) have recently reported that oral use of E3 1–2 mg daily increases the relative risk of endometrial cancer and endometrial hyperplasia. Thus it is necessary to monitor the endometrium during such treatment with E3. The latter is also referred to as a terminal metabolite or as an impending estrogen, and is known to play a role in the metabolic responses in the target tissues that express the estrogen receptor.\(^{25}\) E3 has a sevenfold and a fivefold lower affinity relative to E2 for the estrogen receptor α and the estrogen receptor β, respectively.\(^{26}\) The relative association constant of E3 with the estrogen receptor has been reported to be 12.5% relative to that of E2, and the potency of E3 in inducing positive co-operativity in the estrogen receptor is 50% that of E2.\(^{27}\) Once et al.\(^{28}\) reported that higher levels of estrogen receptor β mRNA compared with estrogen receptor α mRNA are expressed in rat calvaria cells and ROS 17/2.8. E3 has a higher affinity for estrogen receptor β than for estrogen receptor α.\(^{29}\) Interestingly, in the present study the treatment with E3 increased the cell viability of cultured HOS in a similar manner to the treatment with E2. Furthermore, it is worth noting that E3 treatment produced a greater increase in VDR receptor mRNA expression in cultured HOS compared with E2 treatment. We have also noted that E3 treatment augments the proliferative activity of cultured HOS assessed by bromodeoxyuridine uptake as much as E2 treatment (unpublished data). It is therefore likely that E3 may be an effective alternative to E2 for preventing loss of bone mineral density in postmenopausal women.

It has become evident that not only VDR but also E3 regulates the number of VDR receptors through its
own specific receptor. Several investigators have reported that E3 increases the amount of both VD₃ receptor mRNA and protein in human and rat bone cells. Li et al. showed that E₂ treatment results in a twofold increase in the number of VD₃ receptors in rat osteosarcoma-derived osteoblast-like cells, ROS 17/2.8. Mahonen et al. reported that E₂ stimulates VD₃ receptor mRNA expression in human osteosarcoma cells. In their studies, the addition of E₂ to a concentration of 10⁻⁸ mol/l increases VD₃ receptor expression in various cells. The present study has demonstrated that treatment with either E₂ or E₃ increases VD₃ receptor mRNA expression in cultured HOS compared with that in untreated control cultures. It is likely that the effects of E₃ on bone may be mediated at least in part through its action on VD₃ receptor mRNA expression, followed by an increase in the sensitivity of osteoblasts to VD₃. Understanding the mechanism of E₃ action on the bone should encourage much wider investigation of its potential clinical use in populations of different ethnic origin, although most of the studies on E₃ action were carried out in Japanese women.

Steroid and nuclear receptor coactivators have been implicated in the regulation of nuclear receptor function by enhancing ligand-dependent transcriptional activation of target gene expression. A number of coactivator molecules of the steroid receptor coactivator/nuclear receptor coactivator family interact with activation functions within nuclear receptors through a conserved region containing helical domains of a core LXXLL sequence, and thus participate in transcriptional regulation. A recent study has shown that the VD₃ receptor and estrogen receptor β interact with different α-helical LXXLL motifs of receptor-associated coactivator 3. Thus it is possible to speculate that E₃-bound nuclear receptors recruit coactivators, including receptor-associated coactivator 3, and enhance the ligand-dependent transcriptional activation of VD₃ receptor mRNA expression. It seems likely that the combined treatment with E₃ and VD₃ augments the cell viability of cultured HOS as much as the combined treatment with E₂ and VD₃. However, the molecular mechanism whereby E₃ affects VD₃ receptor mRNA expression in cultured HOS is still unknown.

In conclusion, we have demonstrated that E₃ treatment increases the cell viability of cultured HOS compared with untreated control cultures. Combined treatment with E₃ and VD₃ further increases the cell viability of cultured HOS compared with treatment with E₃ alone, and E₂ treatment also results in a substantial increase in VD₃ receptor mRNA expression in cultured HOS compared with untreated control cultures. Although the biological role of E₃ in bone cells has yet to be explored, the present study moves toward a better understanding of the molecular mechanisms underlying the clinical effects of E₃ alone or combined therapy with E₃ and VD₃ in the maintenance of bone density in postmenopausal women.

ACKNOWLEDGEMENTS
This research was supported in part by Grant-in-Aid for Scientific Research No. 11671619 from the Japanese Ministry of Education, Science and Culture and by the Japan Association of Obstetricians and Gynecologists Ogyaa-Donation Foundation (JODF).

REFERENCES