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ABSTRACT:  Gonadal steroid hormones such as estrogen and progesterone
can no longer be considered strictly within the confines of reproductive
function, and with respect to their anatomic targets, extrahypothalamic
structures within the brain such as the cerebral cortex have revealed them-
selves to be important targets. As such, it may come as no surprise that the
decline in such hormones, which occurs after the menopause or ovariecto-
my, can result in neuronal dysfunction. Although estrogen has been shown
to help restore the deficits consequent to ovariectomy, it is important to
consider that ovariectomy, like the menopause, results in the precipitous
loss of not only estrogen but of progesterone as well. As such, the loss of
progesterone may contribute to the deficits observed after ovariectomy or
the increased risk for Alzheimer’s disease seen after the menopause. In-
deed, recent evidence supports the neuroprotective potential of progester-
one itself. Here, we review the current understanding of some of the diverse
mechanisms by which progesterone may reduce neuronal vulnerability to
toxic insults relevant to age and age-associated diseases such as Alz-
heimer’s disease. Further, we comment on the need to carefully consider
the various preparations of progestins that are currently available and ar-
gue that “not all progestins are created equal,” at least when it comes to in-
fluences on neuroprotection and other extrahypothalamic brain functions.
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Progesterone is a major gonadal hormone that is synthesized primarily by
the ovary (corpus luteum) in the female and by the testes and adrenal cortex
in the male. Although progesterone levels are generally higher in the female,
it is worth noting that levels of progesterone during the female follicular
phase of the menstrual cycle are similar to those seen in males, suggesting
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that progesterone plays an equally important role in both males and females.
The paradigmatic mechanism by which progesterone elicits its effects is
through the progesterone receptor (PR), which like estrogen receptors
(ERs), has classically been described as a nuclear transcription factor, acting
through specific progesterone response elements (PREs) within the promot-
er region of target genes to regulate transcription. Such a mechanism may be
relevant to the regulation of neurotrophin expression, which also appears to
be regulated by progesterone.1 

Two major isoforms of the classical progesterone receptor exist, PR-B, and
its N-terminally truncated form, PR-A. The latter has been shown to exert
negative control of not only PR-B-mediated transcription but that mediated
by the ER and glucocorticoid receptor as well. This negative regulation of ER
function by a PR may underlie, at least in part, the mechanism by which
progestins functionally antagonize the effects of estrogen. For example,
progestins inhibit estrogen’s ability to increase serum levels of 1,25-
dihydroxy vitamin D,2 whose consequence may be to antagonize estrogen’s
beneficial effects on bone. However, the interaction between the two recep-
tors may not only result in transrepression but may also be cooperative in na-
ture. For example, Migliaccio et al.3 demonstrated a physical interaction of
the progesterone receptor with the ER in mammary tumor cells and that this
association was necessary for progesterone to elicit the activation of the
mitogen-activated protein kinase (MAPK) pathway. Further, the ability of
progesterone to stimulate the MAPK pathway was blocked not only by a PR
antagonist but also by an ER antagonist.3

As introduced in the preceding paragraph, progesterone can also elicit its
effects via nongenomic mechanisms (such as the activation of typically
growth factor–associated signal transduction pathways). The growing list of
second-messenger/signal transduction systems activated by progesterone in-
cludes cAMP/PKA,4 MAPK (ERK1/2),3,5 and the PI-3K/Akt pathway.5 Ac-
tivation of such signaling pathways may not only be relevant to how
progesterone regulates cellular function related to reproduction but may also
be an important mechanism by which progesterone elicits its neuroprotective
effects. For example, progesterone-induced neuroprotection has not only
been correlated with activation of the MAPK and Akt signaling pathways6,7

but has also been shown to depend on the activation of the MAPK pathway.1

As mediators of these nongenomic effects, the classical receptor has been
implicated, but depending on the cellular context, a novel receptor system for
progesterone may also be involved. For example, progesterone may exert its
effects via interactions with membrane binding sites, characterized in the
brain by the demonstration of specific, displaceable binding in synaptosomal
membrane preparations.8,9 Such membrane binding sites may include the re-
cently cloned membrane progesterone receptor that exhibits characteristics of
G protein–coupled receptors.10,11 Progesterone, through its metabolites, can
also interact with membrane-associated receptors coupled to ion channels,
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such as the GABAA receptor system (see Ref. 12 for review). Such metabo-
lites include allopreganolone (or 3α,5α-tetrahydroprogesterone), which can
bind to discrete sites within the hydrophobic domain of the GABAA receptor
complex and result in the potentiation of GABA-induced chloride conduc-
tance—and in turn may regulate cellular excitability and thus, excitotoxicity.
Thus, progesterone’s ability to interact with specific sites within the mem-
brane (either membrane-binding sites [receptors] or with the GABAA recep-
tor), as well as with specific cytosolic signal transducers, may help explain
some of the rapid effects of progesterone, which in addition to its classical
genomic mechanisms, may be important for regulating cell viability. Alterna-
tively, the parent compound, progesterone, may also have effects on the
GABAA receptor, albeit indirect. For example, progesterone may influence
the GABAA receptor via the activation of a signal transduction pathway,
which in turn, influences GABA-gated currents through phosphorylation of
discrete sites within certain subunits of the GABAA receptor.13,14

PROGESTERONE-INDUCED NEUROPROTECTION

A considerable amount of information has been obtained regarding the
mechanisms underlying estrogen’s protective effects. One experimental mod-
el that has been valuable in the validation of the hypothesis that estrogens are
beneficial is the use of the ovariectomized animal. Ovariectomy results in im-
paired cellular function that is reflected by behavioral, neurochemical, and
molecular deficits consistent with those seen with advanced age or in certain
age-associated diseases like Alzheimer’s disease. Estrogen treatment of ova-
riectomized animals at least partially normalizes the deficits.15–17 It is impor-
tant to recognize, however, that ovariectomy results in the loss of not only the
primary forms of circulating estrogen but also of another major ovarian hor-
mone, progesterone. Thus, the behavioral, neurochemical, and molecular
deficits that resulted from ovariectomy may not only have been due to a loss
in circulating estrogen levels but may also have been a consequence of
progesterone loss. Moreover, estrogen replacement does not always lead to
the complete recovery of the ovariectomy-induced deficit.17 As such, this
partial normalization could be a result of not having replaced the other steroid
hormones similarly lost following ovariectomy. 

In humans, the menopause is also characterized by the concomitant loss of
progesterone, and not just estrogen. As such, the increased risk for develop-
ing Alzheimer’s disease may be contributed by the precipitous decline in both
estrogen and progesterone levels. Thus, it is possible that progesterone is
equally beneficial, either alone or in conjunction with estrogen. 

In fact, progesterone, like estrogen, has been reported to have neuroprotec-
tive effects in various experimental models. In hippocampal neurons, both es-
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tradiol and progesterone were shown to reduce neuronal vulnerability to such
insults as glutamate, FeSO4, and Aβ toxicity.18 In addition, secondary neu-
ronal loss following cortical contusion injury and resulting cognitive impair-
ment was significantly reduced in mice that received progesterone treatment
relative to that of untreated controls.19,20 Progesterone was also effective at
reducing the amount of cell death seen in an acute model of global is-
chemia.21 Further, progesterone was protective against excitotoxic insult and
promoted morphological and functional recovery in the Wobbler mouse, an
animal model of spinal cord degeneration.22,23 

Mechanistically, progesterone-induced neuroprotection may be mediated
by multiple mechanisms. The effects of progesterone on neurotrophin ex-
pression may be mediated by the classical mechanism of transcriptional acti-
vation. Alternatively, progesterone may act through novel receptor systems
(membrane PR or the GABAA receptor) to regulate cellular events that are
important for neuroprotection. For example, metabolites of progesterone,
such as allopregnanolone, can bind to a site within the GABAA receptor com-
plex, and as a consequence, potentiate the effect of GABA on its receptor (see
Ref. 12 for review). This activation of the GABAA receptor, in turn, has been
shown to modulate cell survival, particularly in models of excitotoxicity, and
may be consistent with the protective effect of progesterone seen against
kainate-induced seizure activity and subsequent cell death.24 Progesterone
may also be protective through its ability to elicit the activation of specific
signaling pathways relevant to neuroprotection,5,6 as well as increasing the
expression of antiapoptotic proteins such as Bcl-2.6 Finally, progesterone has
been described to have antioxidant effects25 that may also contribute to neu-
ronal survival following injury. Collectively, these data support the multiple
mechanisms by which progesterone is protective and supports the importance
of progesterone, either alone or in combination with estrogen, in promoting
cell survival. 

CLINICAL USES OF PROGESTINS

The major form of progestin used in hormone therapy (HT) is the synthetic
compound medroxyprogesterone acetate (MPA), which is the major proges-
tin used in the formulation of hormone therapy and oral contraceptives. With
regards to HT, the role of the progestin is to counteract the uterotrophic ef-
fects of estrogen or an apparent increase in risk for certain cancers like uter-
ine cancer resulting from unopposed estrogen treatment (for review, see Ref.
26). The natural hormone, progesterone (Prometrium®), is also used, though
to a lesser degree in the United States. Although both the synthetic progestins
and the natural hormone, progesterone, can elicit similar effects (i.e., both
can inhibit the uterotrophic effects of estrogen and can exert an inhibitory in-
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fluence [negative feedback] on gonadotropin secretion at the level of the hy-
pothalamus), it is important to recognize that these hormones do exhibit
important differences, particularly in relation to their effects on the brain. For
example, progesterone has been described to be neuroprotective,6,18 whereas
the synthetic progestin, MPA, was not.6 Moreover, MPA antagonized the ef-
fects of estrogen, whereas the natural hormone progesterone did not.6,7,27

Such differences may be important in considering the results of the recently
published WHI studies which used MPA rather than progesterone, and fur-
ther, could provide critical insight into the development of the most effective
therapeutic formulations for the treatment of various postmenopausal
conditions. 
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